Matteo Cantiello | Stellar Physics
 

Thermohaline Mixing

 
 
Salt fingers

Thermohaline mixing is a hydrodynamic instability that arises when an unstable gradient in composition is stabilized by a gradient in temperature. Because it involves the diffusion of two different components (particles and heat) it belongs to the more general class of double-diffusive instabilities. In the ocean this instability can occur, for example, in regions where the evaporation leaves a warm layer of saltier water on top of less salty, cooler water. In this situation the saltier water can sink only after exchanging its heat excess. The optimal configuration for an efficient heat exchange requires a large contact surface; long finger satisfy this requirement, and so in oceanography this instability is called "Salt fingers".


Thermohaline Mixing in Stars

A similar process occurs in stars in case of inverse mean molecular weight gradients in a thermally stabilized medium. This can take place during the accretion of material in a binary system or in the case of off-center burning. Thermohaline mixing can be important also in red giant stars, where the mixing process can help explaining the intriguing surface abundances observed. In red giant stars a reaction of the pp-chain is able to create an inversion in the mean molecular weight gradient, as the H-shell burning operates in an homogenous region (due to the first dredge-up). The resulting thermohaline mixing could be responsible for the destruction of 3He in such low mass stars. In fact these stars are net producers of 3He in standard stellar evolution calculations, but the amount of 3He observed in the interstellar medium matches the predictions of Big-Bang nulceosynthesis. Therefore thermohaline mixing could help to reconcile predictions of stellar evolution calculations with the observations and Big-Bang nulceosynthesis. If you want to know more about the possibility of salt fingers occurring in the future Sun, take a look at my paper on "Thermohaline Mixing in Evolved Low Mass Stars" (Cantiello & Langer 2010).

 
Thermohaline_Mixing_RedGiant.png

 

In the Kitchen!

It is possible to see the development of the hydrodynamical instability in a simple kitchen-experiment. All you need is water, salt, ink, a transparency and two glasses. Below you can find a few pictures of the experimental setup and of the beautiful fingers that can develop if you do things right. A tip: you just need a very small amount of salt to prepare the warm salty water that goes in the top glass. If you put too much you will see another instability: Rayleigh-Taylor. Pictures below are from this very experiment performed by myself and Evert Glebbeek at Utrecht University in 2007.